
Localizing CyberGIS-Compute through Containers
Mit Kotak

mitak2@illinois.edu
University of Illinois Urbana-Champaign

Urbana, Illinois, US

Zimo Xiao
zimox2@illinois.edu

University of Illinois Urbana-Champaign
Urbana, Illinois, US

Figure 1: Overview of Local CyberGIS-Compute Container

ABSTRACT
In recent years there has been a push towards solving complex
geospatial problems using advanced cyberinfrastructure (CI) sys-
tems, broadly defined as CyberGIS. While this allows the geo-
sciences to tackler larger and more complex problems, adoption of
cyberGIS techniques are slowed by the technical barriers associ-
ated with CI. Within the CyberGIS ecosystem, CyberGIS-Compute
has emerged as a promising middleware for bridging access to
High Performance Computing Resources (HPC) by providing a
simple, easy-to-use Jupyter interface. However, its integration with
external HPC resources makes it difficult for model contributors
and developers to develop, debug, and test. We present a self con-
tained Dockerized framework that can independently run the full
CyberGIS-Compute stack on local machines. This streamlines the
development process for model contributors and developers in the
CyberGIS-Compute community.

CCS CONCEPTS
• Applied computing → Earth and atmospheric sciences; •
Information systems→ Geographic information systems.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
Containers, HPC, CyberGIS

ACM Reference Format:
Mit Kotak and Zimo Xiao. 2022. Localizing CyberGIS-Compute through
Containers. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
CyberGIS, defined as geographic information science and systems
based on advanced cyberinfrastructure (CI) (e.g., High Performance
Computing (HPC) resources), has transformed how large-scale
geospatial problem solving is conducted [7]. However, leverag-
ing cybergis capabilities and CI resources is challenging, both due
to the steep learning curve. CyberGIS-Compute [4] has emerged
as a promising middleware that provides access to HPC resources
through CyberGIS-Jupyter[5], an easy-to-use Jupyter interface. Ap-
plications of CyberGIS-Compute involve remote sensing data fu-
sion [2], spatial accessibility [1], and hydrological modeling.

CyberGIS-Compute also provides a unique model contribution
mechanism that allows community members to easily share their
models with the users. This not only ensures reproducibility, but
also compresses the model’s complexity into a simple user inter-
face where the model contributor can preconfigure the user-facing
parameters. Model contributors package their models as Github
repositories with metadata describing how CyberGIS-Compute
should run the model. While this mechanism greatly simplifies the
process of using these models, model contributors have to still test
and debug their models on HPC resources in order to integrate

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Kotak and Xiao et. al.

them into the CyberGIS-Compute framework. This is not ideal
since HPC resources cannot be securely shared across the model
contributor community and often provides limited control over the
model environment. The integration with HPC also complicates
development and testing of CyberGIS-Compute.

We propose a novel framework that runs CyberGIS-Compute
on local machines. This greatly simplifies the development process
since model contributors: (a) can quickly configure the dependen-
cies needed for the model by trying out different Singularity images,
(b) can ensure that their model is able to pass through different
layers of CyberGIS-Compute and successfully run on the desired
back-end resource, and (c) can simulate different HPC configura-
tions to see how their model might get parallelized across multiple
nodes. We use Docker microservices [3] to create separate layers
within the same network, thus providing a self-contained local
deployment of all the components of CyberGIS-Compute.

2 ARCHITECTURE
The CyberGIS-Compute architecture can be broadly classified into
three components: JupyterHub, CyberGIS-Compute and HPC in-
frastructure. These components are distributed making it tedious
to deploy and debug CyberGIS-Compute, especially for community
members without direct access to the infrastructure. On top of that,
CyberGIS-Compute consists of multiple layers as shown in Figure 1
which makes it difficult to trace bugs through different stacks.

Our approach involves creating separate Docker containers for
all of these services and then running them on the same machine
and network. Instead of relying on CyberGIS-Compute logs, model
contributors and developers have direct access to docker logs which
helps breakdown their workflow into manageable chunks.

The various Docker containers can be grouped into three sec-
tions: user interface, Cybergis-Compute and SLURM backend. The
user interface consists of a JupyterHub which spawns individual
user containers. The user container can be configured to match the
user’s preferred Jupyter environment whereas the JupyterHub con-
tainer manages user authentication for CyberGIS-Compute. These
settings are be helpful to users who might be interested in set-
ting up CyberGIS-Compute deployments for their research group
or department. The Cybergis-Compute library is packaged into
a separate container which provides RESTful services. The HPC
backend is replaced by a set of SLURM containers [6] which can be
configured to match different HPC machine configurations.

We faced two main challenges while creating this framework.
The first one was networking. We had to map out all of the different
SSH and REST calls that were happening across different services
onto a single network without modifying any of these services
since we wanted to replicate CyberGIS-Compute’s behavior on
HPC resources. The next challenge was to install all of the depen-
dencies typically found on HPC machines while ensuring that the
deployment was light enough to run on user machines.

3 CONCLUDING DISCUSSION
We envision this framework will empower the CyberGIS-Compute
community to take a more active role in its development. Model

contributors can integrate this framework into their model test-
ing workflow to ensure long term compatibility with CyberGIS-
Compute. Community developers can use this tool to locally test
their contributions of new features and submitting bug reports.
Lastly, this framework will greatly simplify deploying CyberGIS-
Compute for those who wish to support their own instance. This
will help realize CyberGIS-Compute’s vision towards democratizing
access to HPC resources.

ACKNOWLEDGMENTS
The authors would like to thank AlexanderMichels, Anand Padman-
abhan and Shaowen Wang for providing feedback on the abstract.
This material is based upon work supported by the Institute for
Geospatial Understanding through an Integrative Discovery En-
vironment (I-GUIDE) that is supported by the National Science
Foundation (NSF) under award No. 2118329. The material is also
based in part upon work supported by NSF under grant No. 1833225.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not nec-
essarily reflect the views of NSF. Our computational work used
Virtual ROGER, which is a geospatial supercomputer supported by
the CyberGIS center for Advanced Digital and Spatial Studies and
the School of Earth, Society and Environment at the University of
Illinois Urbana-Champaign.

REFERENCES
[1] Jeon-Young Kang, Alexander Michels, Fangzheng Lyu, Shaohua Wang, Nelson

Agbodo, Vincent L Freeman, and Shaowen Wang. 2020. Rapidly Measuring Spatial
Accessibility of COVID-19 Healthcare Resources: A Case Study of Illinois, USA.
International journal of health geographics 19, 1 (2020), 1–17.

[2] Fangzheng Lyu, Zijun Yang, Zimo Xiao, Chunyuan Diao, Jinwoo Park, and
Shaowen Wang. 2022. CyberGIS for Scalable Remote Sensing Data Fusion. In
Practice and Experience in Advanced Research Computing (PEARC ’22). Association
for Computing Machinery, New York, NY, USA, 1–4. https://doi.org/10.1145/
3491418.3535145

[3] Dirk Merkel et al. 2014. Docker: lightweight linux containers for consistent
development and deployment. Linux j 239, 2 (2014), 2.

[4] Anand Padmanabhan, Zimo Xiao, Rebecca Vandewalle, Furqan Baig, Alexander
Michels, Zhiyu Li, and Shaowen Wang. 2021. CyberGIS-Compute for Enabling
Computationally Intensive Geospatial Research. In SpatialAPI’21: Proceedings of the
3rd ACM SIGSPATIAL International Workshop on APIs and Libraries for Geospatial
Data Science. https://doi.org/10.1145/3486189.3490017

[5] Anand Padmanabhan, Zimo Xiao, Rebecca Vandewalle, Alexander Michels, and
Shaowen Wang. 2021. Enabling Computationally Intensive Geospatial Research
on CyberGIS-Jupyter with CyberGIS-Compute. In Proceedings of Gateways 2021.
Zenodo. https://doi.org/10.5281/zenodo.5570056

[6] Giovanni Torres. 2013. Project Title. https://github.com/giovtorres/slurm-docker-
cluster.

[7] ShaowenWang. 2010. A CyberGIS Framework for the Synthesis of Cyberinfrastruc-
ture, GIS, and Spatial Analysis. Annals of the Association of American Geographers
100, 3 (June 2010), 535–557. https://doi.org/10.1080/00045601003791243

https://doi.org/10.1145/3491418.3535145
https://doi.org/10.1145/3491418.3535145
https://doi.org/10.1145/3486189.3490017
https://doi.org/10.5281/zenodo.5570056
https://github.com/giovtorres/slurm-docker-cluster
https://github.com/giovtorres/slurm-docker-cluster
https://doi.org/10.1080/00045601003791243

	Abstract
	1 Introduction
	2 Architecture
	3 Concluding Discussion
	Acknowledgments
	References

