Efficiently Executing NumPy on GPUs via the CUDAGraph API

Mit Kotak - Kaushik Kulkarni - Andreas Klockner

National Center for Supercomputing Applications - Urbana, IL

Why GPUs?

35 YEARS OF MICROPROCESSOR TREND DATA e B0 (T iy FRET) m We observed a speed up of upto 15% on NVIDIA Titan V for smaller problems
1073* rrensistors Core ,//VV cuGraphAddMemAllocNode (&memalloc_x, m_graph) WhICh was attributed to hlgh task para||e|ism
1065_ A S — actx=PyCUDAGraphArrayContext O :__> cuGraphAddMemAllocNode (&memalloc_tmp, m_graph) _ _
oL ! ! c e aets . meres (E0 9199 p [cuGraphAddMemSetNode (4memset_node, m_graph, [memallloc_x]) H We observed overlapplng kernels dCrosSssS multlple streams fOI’ the CUDAGraph APl
. Single-thread = -) ? —p [cuGraphAddKernelNode (4k_node, [memset_x, memalloc_tmp]l, 2)
40 . Performance L1 Cache L1 Cache tmp:x-{-i . program
107 . (SpecINT) —p|cuGraphInstantiate (&m_exec, m_graph)
L ! result=actx.freeze (tmp) » cuGraphLaunch (m_exec)
1021 - Typical Pover Lieare — —|cuGraphExecDestroy (&m_exec)
3 (Watts) L L
A e - O o R —»|culraphDestroy (&n_graph) Graph vs Non-graph comparision for batched sobel operator
of P e 2R -~ p— Figure: User Input Program Figure: Driver C code :
wire— - e —8— Image Size : 600x600
1975 1980 1985 1990 1995 2000 2005 2010 2015 ,
, _ o 1.12 A Image Size : 300x246
m CPU performance is flatlining
m GPUs devote more transistors to data processing @HOCN@ 1.10 -

m Array operations realized as a composition of

Abstract CUDA calls (memcpy, kernel_launches, l 1.08 -
memalloc) that are added onto a task @eﬂ‘k’d@ @”"CN“@

o
: : : : L ' ' > 1.00 A
m NumPy is the defacto standard for array-based numerical computations in scientific dependency graph with precise edges. O
workloads (for ex. PDE solving, Image Processing, etc.) m Object clean.up tied to lifetime of objects in B 1.04 -
m However, its ability to harness GPU acceleration is limited by its single-node, AL CPEEIeE
occasionally multi-threaded, CPU- only execution model 1.02 -
m Goal: Should be able to efficiently execute array operations on GPUs Figure: Generated CUDAGraph .. —0— .

m Challenges:

m Saturating all available execution units to efficiently use the entire GPU]
directives such as: | | | | , ,
m Execution grid-size which affects data partitioning We ran a set of image processing algorithms with and without CUDAGraph API on different image batches 0 200 400 600 800 1000
m User-specified local memory management 0 D Number of Images

B Kernel launch overhead costs

s Realizing concurrency across array operations

m Our Approach: Use CUDAGraph API to concurrently launch array operations using
tuned kernels that are accessed through PyCUDA

m Past work:
m Legate: A runtime system for scheduling operations in a task graph

0 EALA - f"& . ﬁf —]]
N OGRG; Figure: Sobel Filter on Image Batches

More Images

More Images

33333

81.95 me¢ 347.9 ms 347.925 ms 347.95 ms 347.975 ms 348.025 ms 34
5] = MemCpy.. =l

aaaaaaaaa

Horizontal Stencil

M Representation lacks a global view of the program limiting the program optmizing space ; 2 ; ; 2 ; ‘ ssssssssssssss
m Lazy evaluation: Theano | JAX | PyTorch 40 121 i
B Requires expensive algorithms (ex. kernel/loop fusion) (Juredimase s T i e 2
m Ex. Theano|3] claim to have super-linear codegeneration algorithm 00282002 g RS = = o = g
m Single Stream: cuPy | GPUArrays jl 0|02] 0 Figure: Kernel Execution timeline with (top) and Figure: Kernel Execution timeline with (top) and
plur Stenel w without (bottom) CUDAGraph APl Image size without (bottom) CUDAGraph API Image size
orzonta sobei mage ¢ O0OD€I Filter 300 x 246 600 x 600
Why CUDAGraphs? \ I
| Results, run instructions at 2 ";'.ﬁ,'.nl',:l-'.
m CUDA Streams D I https://github.com/mitkotak/sobel E" o
m Operations are enqueued in-order into the stream object More Images More Images O oh

m CUDAGraph API

m [akes in a task dependency graph where each node corresponds to a CUDA kernel
m Scheduler realizes concurrency across nodes in the graph through multiple streams

imageBlur horizontal imageBlur_vertical imageBlur horizontal imageBlur vertical

gradient horizontal gradient horizontal gradient horizontal

@ |« ®| ® |~
Acknowledgements

imageBlur horizontal imageBlur vertical

Dataflow Graph Time Stream Graph API m Upstream work: Integrate with PyCUDA and Arraycontext

— m Evalulate this approach on large scale scientific simulations

6 ° t=1 @ This material is based in part upon work supported by the Department of Energy,
Figure: Sobel Filter Graph National Nuclear Security Administration, under Award Number DE-NA0003963

§ - @ | @

................................. (https://docs.nvidia.com/cuda/cuda-c-programming—guide/index.html)

m Chapter 27 - GPU Scripting and Code Generation with PyCUDA
t=3 @ (https://doi.org/10.1016/B978-0-12-385963-1.00027-7)

v m [heano: A Python framework for fast computation of mathematical expressions
(https://doi.org/10.48550/arXiv.1605.02638)

References

m CUDA Programming: A Developer's Guide to Parallel Computing with GPUs

Figure: Single Stream vs CUDAGraphs scheduling

AV
NCSA

mitak2@illinois.edu

X ILLINOIS

https://github.com/mitkotak/sobel

