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Why GPUs?

CPU performance is flatlining
GPUs devote more transistors to data processing

Abstract

NumPy is the defacto standard for array-based numerical computations in scientific
workloads (for ex. PDE solving, Image Processing, etc.)
However, its ability to harness GPU acceleration is limited by its single-node,
occasionally multi-threaded, CPU- only execution model
Goal: Should be able to efficiently execute array operations on GPUs
Challenges:

Saturating all available execution units to efficiently use the entire GPU
NumPy is a high-level programming interface, does not address performance
directives such as:

Execution grid-size which affects data partitioning
User-specified local memory management
Kernel launch overhead costs

Realizing concurrency across array operations
Our Approach: Use CUDAGraph API to concurrently launch array operations using
tuned kernels that are accessed through PyCUDA
Past work:

Legate: A runtime system for scheduling operations in a task graph
Representation lacks a global view of the program limiting the program optmizing space

Lazy evaluation: Theano | JAX | PyTorch
Requires expensive algorithms (ex. kernel/loop fusion)
Ex. Theano[3] claim to have super-linear codegeneration algorithm

Single Stream: cuPy | GPUArrays.jl

Why CUDAGraphs?

CUDA Streams
Operations are enqueued in-order into the stream object

CUDAGraph API
Takes in a task dependency graph where each node corresponds to a CUDA kernel
Scheduler realizes concurrency across nodes in the graph through multiple streams
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Figure: Single Stream vs CUDAGraphs scheduling

Interface Implementation

Array operations realized as a composition of
CUDA calls (memcpy, kernel_launches,
memalloc) that are added onto a task
dependency graph with precise edges.
Object cleanup tied to lifetime of objects in
array operations

Figure: Generated CUDAGraph

Experimental Setup

We ran a set of image processing algorithms with and without CUDAGraph API on different image batches
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Figure: Sobel Filter Graph

Results

We observed a speed up of upto 15% on NVIDIA Titan V for smaller problems
which was attributed to high task parallelism
We observed overlapping kernels across multiple streams for the CUDAGraph API
program
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Graph vs Non-graph comparision for batched sobel operator
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Figure: Sobel Filter on Image Batches

Figure: Kernel Execution timeline with (top) and
without (bottom) CUDAGraph API Image size
300 x 246

Figure: Kernel Execution timeline with (top) and
without (bottom) CUDAGraph API Image size
600 x 600

Results, run instructions at
https://github.com/mitkotak/sobel

Future Work

Upstream work: Integrate with PyCUDA and Arraycontext
Evalulate this approach on large scale scientific simulations
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