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Why GPUs?
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m CPU performance is flatlining
m GPUs devote more transistors to data processing @HOCN@ 1.10 -

m Array operations realized as a composition of

Abstract CUDA calls (memcpy, kernel_launches, l 1.08 -
memalloc) that are added onto a task @eﬂ‘k’d@ @”"CN“@
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m NumPy is the defacto standard for array-based numerical computations in scientific dependency graph with precise edges. O
workloads (for ex. PDE solving, Image Processing, etc.) m Object clean.up tied to lifetime of objects in B 1.04 -
m However, its ability to harness GPU acceleration is limited by its single-node, AL CPEEIeE
occasionally multi-threaded, CPU- only execution model 1.02 -
m Goal: Should be able to efficiently execute array operations on GPUs Figure: Generated CUDAGraph .. —0— .

m Challenges:

m Saturating all available execution units to efficiently use the entire GPU ]
directives such as: | | | | , ,
m Execution grid-size which affects data partitioning We ran a set of image processing algorithms with and without CUDAGraph API on different image batches 0 200 400 600 800 1000
m User-specified local memory management 0 D Number of Images

B Kernel launch overhead costs

s Realizing concurrency across array operations

m Our Approach: Use CUDAGraph API to concurrently launch array operations using
tuned kernels that are accessed through PyCUDA

m Past work:
m Legate: A runtime system for scheduling operations in a task graph
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M Representation lacks a global view of the program limiting the program optmizing space ; 2 ; ; 2 ; ‘ ssssssssssssss
m Lazy evaluation: Theano | JAX | PyTorch 40 121 i
B Requires expensive algorithms (ex. kernel/loop fusion) ( Juredimase s T i e 2
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Why CUDAGraphs? \ I
| Results, run instructions at 2 ";'.ﬁ,'.nl',:l-'.
m CUDA Streams D I https://github.com/mitkotak/sobel E" o
m Operations are enqueued in-order into the stream object More Images More Images O oh

m CUDAGraph API

m [akes in a task dependency graph where each node corresponds to a CUDA kernel
m Scheduler realizes concurrency across nodes in the graph through multiple streams
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Dataflow Graph Time Stream Graph API m Upstream work: Integrate with PyCUDA and Arraycontext

— m Evalulate this approach on large scale scientific simulations
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