
Efficiently Executing NumPy on GPUs via the CUDAGraph API
Mit Kotak · Kaushik Kulkarni · Andreas Klöckner
National Center for Supercomputing Applications · Urbana, IL

Why GPUs?

CPU performance is flatlining
GPUs devote more transistors to data processing

Abstract

NumPy is the defacto standard for array-based numerical computations in scientific
workloads (for ex. PDE solving, Image Processing, etc.)
However, its ability to harness GPU acceleration is limited by its single-node,
occasionally multi-threaded, CPU- only execution model
Goal: Should be able to efficiently execute array operations on GPUs
Challenges:

Saturating all available execution units to efficiently use the entire GPU
NumPy is a high-level programming interface, does not address performance
directives such as:

Execution grid-size which affects data partitioning
User-specified local memory management
Kernel launch overhead costs

Realizing concurrency across array operations
Our Approach: Use CUDAGraph API to concurrently launch array operations using
tuned kernels that are accessed through PyCUDA
Past work:

Legate: A runtime system for scheduling operations in a task graph
Representation lacks a global view of the program limiting the program optmizing space

Lazy evaluation: Theano | JAX | PyTorch
Requires expensive algorithms (ex. kernel/loop fusion)
Ex. Theano[3] claim to have super-linear codegeneration algorithm

Single Stream: cuPy | GPUArrays.jl

Why CUDAGraphs?

CUDA Streams
Operations are enqueued in-order into the stream object

CUDAGraph API
Takes in a task dependency graph where each node corresponds to a CUDA kernel
Scheduler realizes concurrency across nodes in the graph through multiple streams

A

B C

D

t = 0

t = 1

t = 2

t = 3

A

B

C

D

A

B C

D

Dataflow Graph Time Stream Graph API

Figure: Single Stream vs CUDAGraphs scheduling

Interface Implementation

Array operations realized as a composition of
CUDA calls (memcpy, kernel_launches,
memalloc) that are added onto a task
dependency graph with precise edges.
Object cleanup tied to lifetime of objects in
array operations

Figure: Generated CUDAGraph

Experimental Setup

We ran a set of image processing algorithms with and without CUDAGraph API on different image batches

Input Image

Blurred Image

Horizontal Sobel Image Vertical Sobel ImageSobel Filter

0 0.2 0

0.2 0.2 0.2

0 0.2 0

-1 2 1

0 0 0

1 2 1

-1 0 1

-2 0 2

-1 0 1

Blur Stencil

Horizontal Stencil Vertical Stencil

More Images

More Images

More Images

More Images

Figure: Sobel Filter Graph

Results

We observed a speed up of upto 15% on NVIDIA Titan V for smaller problems
which was attributed to high task parallelism
We observed overlapping kernels across multiple streams for the CUDAGraph API
program

0 200 400 600 800 1000
Number of Images

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

Graph vs Non-graph comparision for batched sobel operator
Image Size : 600x600
Image Size : 300x246

Figure: Sobel Filter on Image Batches

Figure: Kernel Execution timeline with (top) and
without (bottom) CUDAGraph API Image size
300 x 246

Figure: Kernel Execution timeline with (top) and
without (bottom) CUDAGraph API Image size
600 x 600

Results, run instructions at
https://github.com/mitkotak/sobel

Future Work

Upstream work: Integrate with PyCUDA and Arraycontext
Evalulate this approach on large scale scientific simulations

Acknowledgements

This material is based in part upon work supported by the Department of Energy,
National Nuclear Security Administration, under Award Number DE-NA0003963

References

CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs
(https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html)
Chapter 27 - GPU Scripting and Code Generation with PyCUDA
(https://doi.org/10.1016/B978-0-12-385963-1.00027-7)
Theano: A Python framework for fast computation of mathematical expressions
(https://doi.org/10.48550/arXiv.1605.02688)

mitak2@illinois.edu

https://github.com/mitkotak/sobel

