
Simplifying Equivariant GPU Kernels through Tile-based
Programming

by

Mit Kotak

B.S, Engineering Physics, University of Illinois at Urbana-Champaign (2023)

Submitted to the Center for Computational Science and Engineering
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTATIONAL SCIENCE AND ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2025

© 2025 Mit Kotak. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to
exercise any and all rights under copyright, including to reproduce, preserve, distribute and

publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Mit Kotak
Center for Computational Science and Enginering
August 19, 2025

Certified by: Tess E. Smidt
Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Nicolas Hadjiconstantinou
Professor of Mechanical Engineering
Co-Director, Center for Computational Science and Engineering

https://creativecommons.org/licenses/by-nc-nd/4.0/


Simplifying Equivariant GPU Kernels through Tile-based Programming
Mit Kotak

ABSTRACT

E(3)-equivariant neural networks have demonstrated success across a wide range of 3D mod-
eling tasks. Until recently, they were bottlenecked due to their high memory and wall-time re-
quirements. In this thesis we first provide an overview of recent GPU kernel efforts by both
academia and industry that address this issue. These approaches tradeoff performance for engi-
neering complexity, while still being algorithmically bottlenecked at 10 % GPU utilization. We
instead trade off engineering complexity for performance. This not only lowers the barrier to
GPU programming but also builds an abstraction layer to reason about future algorithmic in-
novations that can improve GPU utilization. Our kernel 𝐵3, based on tile-based programming
implements all existing optimizations in just 100 lines of PyTorch-like code. We explore the
performance-simplicity tradeoff with two case studies and demonstrate the practicality of our
kernel workflow through downstream integration with a production model. We hope this work
serves as inspiration to broaden and deepen existing equivariant kernel efforts.
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Yes, there were times, I’m sure you knew
When I bit off more than I can could chew
But through it all, when there was doubt
I ate it up and spit out
I faced it all, and I stood tall
And did it my way

—Frank Sinatra
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Chapter 1

Introduction

In the physical world, many systems exhibit fundamental symmetries. For example, the laws of
physics remain unchanged if we rotate a molecule in 3D space, translate it to a different location,
or reflect it through a mirror. Spatial symmetries are a useful inductive bias while modeling com-
plex physical systems. Incorporating them into neural networks has been shown to significantly
improve both learning efficiency and robustness [4, 11, 28, 31]. To address the specific symme-
tries present in 3D systems, considerable effort has been dedicated to the development of 𝐸 (3)-
equivariant neural networks [18, 19, 36, 38]. Equivariant networks have delivered strong perfor-
mance across a wide range of scientific applications, including molecular force fields [3, 4, 25],
catalyst discovery [22], generative models [15], charge density prediction [12], and protein struc-
ture prediction [17, 20].

Despite their robustness and practical success, these networks have been computationally
bottlenecked by their high compute and memory requirements. While traditional networks are
largelymade up ofmatrixmultiplication operations, these networks havemuchmore complicated
operations that don’t map easily onto modern GPUs. This has naturally inspired a lot of work
by both academia and industry in writing custom GPU kernels for these networks[5, 10, 21, 26].
While these kernels have helped bring down compute requirements, their engineering complexity
has still limited their impact to a small class of equivariant architectures. Existing kernels are also
algorithmically bottlenecked at only being able to use 10% of the available GPU compute. There
is a need for both broadening as well deepening existing kernel efforts.

In this thesis we take the first step in this direction by simplifying the existing kernel work-
flow. Rather than adding more complexity to squeeze out additional performance, we focus on
making the development process more accessible while still retaining the level of GPU control
needed to implement all existing optimizations. Our approach draws inspiration from the popu-
lar FlashAttention kernel [6], whose key optimizations can be implemented within 100 lines[9].

We ask: Can we write a 100-line simplified equivariant kernel that captures all known
optimizations while remaining accessible to non-GPU experts ?

10



We introduce 𝐵31, a kernel built on the tiling-based programming paradigm. Tiling-based lan-
guages such as Triton[37] have become the defacto choice for non-GPU experts due to their
accessible GPU programming model. 𝐵3 preserves this accessibility by translating existing op-
timizations into a form that can be implemented using a tiling language. This is done by intro-
ducing additional metadata at runtime. By carefully broadcasting the inputs using this meta-
data, the engineering complexity reduces to 100 lines of PyTorch-like code. We then explore
the performance-simplicity tradeoff for NequIP[4] and Allegro[25] kernels through microbench-
marks, and show end to end benchmarks for Allegro.

1.1 Overview of Thesis

Chapter 2 provides a background onGPUs and equivariant networks partly adapted from [39] that
I co-authored and presented at ICML 2025. Chapter 2 also dives into the GPU utilization issue that
motivates the direction of this thesis. Chapter 3 introduces 𝐵3 and dives into its implementation
with case studies. Chapter 4 highlights kernel micro benchmarks and end to end integration
results that I integrated into [34] which is currently under review.

1𝐵3 is named after the 3 input broadcasts in the kernel and also happens to bemy favorite ice-cream at Toscanini’s
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Chapter 2

Background and Related Work

2.1 Equivariant Networks

2.1.1 Irreducible Representations of E(3) or Irreps

We give a brief overview of representation theory since irreps form the fundamental datatype
and dictate the rules for manipulating the tensors in these networks.

A representation 𝜌 of a group 𝐺 maps each group element 𝑔 to a bijective linear transfor-
mation 𝜌 (𝑔) ∈ 𝐺𝐿(𝑉 ), where 𝑉 is some vector space. Representations must preserve the group
multiplication property

𝜌 (𝑔 · ℎ) = 𝜌 (𝑔) ◦ 𝜌 (ℎ) ∀𝑔, ℎ ∈ 𝐺 (2.1)

Thus, the representation 𝜌 defines a group action on a vector space 𝑉 . The dimension of the
representation 𝜌 is simply defined as the dimension of the vector space 𝑉 .

There may be subspaces𝑊 ⊂ 𝑉 which are left invariant under actions of 𝜌 (𝑔) for all 𝑔 ∈ 𝐺 .
If this is the case, then restricting to𝑊 also gives a representation 𝜌 |𝑊 (𝑔) ∈ GL(𝑊 ). If there is
no nontrivial𝑊 , then we say the representation 𝜌 is an irreducible representation (irrep).

Because E(3) is not a compact group, the usual approach is to consider irreps of the group
SO(3) of 3D rotations, and compose them with the representation in which translations act as the
identity.

𝜌 (𝑅,𝑇 ) = 𝜌′(𝑅) (2.2)

This is why translations are often handled in 𝐸 (3)-equivariant neural networks by centering
the system or only using relative vectors.

The ‘scalar’ representation 𝜌scalar representation of 𝑆𝑂 (3) is defined as:

𝜌scalar(𝑅) = id ∀𝑅 ∈ 𝑆𝑂 (3) (2.3)

and is of dimension 1 over 𝑉 = R. Elements of R are unchanged by any rotation 𝑅. We call such
elements ‘scalars’ to indicate that they transform under the ‘scalar’ representation of 𝑆𝑂 (3). An
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example of a ‘scalar’ element could be energy of an atom, which does not change under rotation
of coordinate frames.

Let 𝑇 (𝑅) ∈ R3×3 be the rotation matrix corresponding to a rotation 𝑅 ∈ 𝑆𝑂 (3). Then, the
‘vector’ representation of 𝑆𝑂 (3) is defined as:

𝜌vector(𝑅) = 𝑇 (𝑅) ∀𝑅 ∈ 𝑆𝑂 (3) (2.4)

and is of dimension 3 over𝑉 = R3. The name arises from the way vectors in R3 transform under a
rotation of the coordinate frame. We call such elements ‘vectors’ to indicate that they transform
under the ‘vector’ representation of 𝑆𝑂 (3). For example, the force and position of an object in a
certain coordinate frame are ‘vectors’.

Weyl’s theorem for the Lie group 𝑆𝑂 (3) states that all finite-dimensional representations of
𝑆𝑂 (3) are equivalent to direct sums of irreps. The irreps of 𝑆𝑂 (3) are indexed by an integer ℓ ≥ 0,
with dimension 2ℓ + 1. ℓ = 0 corresponds to the ‘scalar’ representation, while ℓ = 1 corresponds
to the ‘vector’ representation above. We will often use𝑚, where −ℓ ≤ 𝑚 ≤ ℓ , to index of each of
the 2ℓ + 1 components.

We say that a quantity x ∈ R2ℓ+1 is a ℓ irrep, if it transforms as the irrep of 𝑆𝑂 (3) indexed by ℓ .
If x1 is a ℓ1 irrep and x2 is an ℓ2 irrep, we say that (x1, x2) is a direct sum of ℓ1 and ℓ2 irreps, which
we call a (ℓ1, ℓ2) rep. Weyl’s theorem states that all reps are a direct sum of ℓ𝑖 irreps, possibly with
repeats over ℓ𝑖 : x = ⊕ℓ𝑖x(ℓ𝑖 ) . The multiplicity of an irrep in a rep is exactly the number of repeats.

We follow the e3nn[13] notation for representing irreps. For example, 64x0e + 64x1o refers
to the direct sum of a scalar 0e and a vector 1o irreps with multiplicity 64. If we wanted a psuedo-
vector instead of vector, the representation would be 64x0e + 64x1e.

2.1.2 Spherical Harmonics

The spherical harmonics are intimately connected to the representations of 𝑆𝑂 (3) and play a key
role in featurizing the geometry in 𝐸 (3) networks.

We define the spherical coordinates (𝑟, 𝜃, 𝜑) as:
𝑥

𝑦

𝑧

 =

𝑟 sin𝜃 cos𝜑
𝑟 sin𝜃 sin𝜑
𝑟 cos𝜃

 (2.5)

for 𝜃 ∈ [0, 𝜋), 𝜑 ∈ [0, 2𝜋).
The spherical harmonics 𝑌ℓ,𝑚 are a set of functions 𝑆2 → R indexed by (ℓ,𝑚), where again

ℓ ≥ 0,−ℓ ≤ 𝑚 ≤ ℓ . Here, 𝑆2 = {(𝑟, 𝜃, 𝜙) | 𝑟 = 1} denotes the unit sphere.
Indeed, as suggested by the notation, the spherical harmonics are closely related to the irre-

ducible representations of 𝑆𝑂 (3). Let 𝑌ℓ be the concatenation of all 𝑌ℓ,𝑚 over all 𝑚 for a given
ℓ :

𝑌ℓ (𝜃, 𝜙) =


𝑌ℓ,−ℓ (𝜃, 𝜙)
𝑌ℓ,−ℓ+1(𝜃, 𝜙)

. . .

𝑌ℓ,ℓ (𝜃, 𝜙)

 (2.6)

When we transform the inputs to 𝑌ℓ (𝜃, 𝜙), the output transforms as a ℓ irrep.
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The spherical harmonics satisfy orthogonality conditions:∫
𝑆2
𝑌ℓ1,𝑚1 · 𝑌ℓ2,𝑚2 𝑑𝑆

2 = 𝛿ℓ1ℓ2𝛿𝑚1𝑚2 (2.7)

where: ∫
𝑆2
𝑓 · 𝑔 𝑑𝑆2 =

∫ 𝜋

𝜃=0

∫ 2𝜋

𝜑=0
𝑓 (𝜃, 𝜑)𝑔(𝜃, 𝜑) sin𝜃𝑑𝜃𝑑𝜑 (2.8)

The orthogonality property allows us to treat the spherical harmonics as a basis for functions
on 𝑆2. We can linearly combine the spherical harmonics using irreps to approximate arbitrary
functions on the sphere. Given a (0, 1, . . . , 𝐿) rep x = (x(0), x(1), . . . , x(𝐿)), we can associate the
function 𝑓x : 𝑆2 → R as:

𝑓x(𝜃, 𝜑) =
𝐿∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

x(ℓ)𝑚 𝑌ℓ,𝑚 (𝜃, 𝜑) (2.9)

The function 𝑓x is uniquely determined by x. In particular, by the orthogonality of the spherical
harmonics (Equation 2.7), we can recover the x(ℓ)𝑚 component:

x(ℓ)𝑚 =

∫
𝑆2
𝑓x · 𝑌ℓ,𝑚 𝑑𝑆2 (2.10)

Thus, we can define the operations ToSphere and FromSphere:

x
ToSphere
−−−−−−−→ 𝑓x

FromSphere
−−−−−−−−−→ x (2.11)

2.1.3 Clebsch Gordon Tensor Product

The most natural map is 𝑉 ×𝑊 → 𝑉 ⊗𝑊 constructed by taking an outer product of the inputs.
If the inputs are explicitly written as a direct sum of irreps, we can write the tensor product as

x ⊗ y =
⊕
x(ℓ1 )∈x
y(ℓ2 )∈y

(x(ℓ1) ⊗ y(ℓ2)) (2.12)

a new basis which is the sum of tensor product reps.
The key idea of a Clebsch-Gordan tensor product is we can explicitly reduce the tensor prod-

uct reps back into a direct sum of irreps with a change of basis. This change of basis is the
definition of the Clebsch-Gordan coefficients, giving us

x(ℓ1) ⊗ y(ℓ2) =
⊕
ℓ3

(x(ℓ1) ⊗CG y(ℓ2)) (ℓ3) (2.13)

where

(x(ℓ1) ⊗CG y(ℓ2)) (ℓ3)𝑚3

=

ℓ1∑︁
𝑚1=−ℓ1

ℓ2∑︁
𝑚2=−ℓ2

𝐶
ℓ3,𝑚3
ℓ1,𝑚1,ℓ2,𝑚2

x(ℓ1)𝑚1 y
(ℓ2)
𝑚2 . (2.14)
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with the weighted version being

x(ℓ1) ⊗ y(ℓ2) =
⊕
ℓ3

𝑤ℓ1,ℓ2(x(ℓ1) ⊗CG y(ℓ2)) (ℓ3) (2.15)

Borrowing terminology from e3nn[13], we define ’paths’ as valid bilinear, equivariant maps
between ℓ1, ℓ2, ℓ3 that satisy the selection rules

|ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2 (2.16)

2.2 GPU Fundamentals

We provide a brief overview of the modern GPU architecture and refer the curious reader to
[2, 24, 33].

2.2.1 Memory Hierarchy

GPU memory can be broken down into off-chip global memory and on-chip cache memory.
There’s a fundamental asymmetry between the size and latencies of these two memories. For
example, an NVIDIA A100 has 40-80 GB of global memory with bandwidth 1.5-2.0 TB/s and 192
KB of on-chip memory with bandwidth 19 TB/s. The on-chip memory is an order of magni-
tude faster than global memory and a couple orders of magnitude smaller than global memory.
Carefully managing this scarce but fast on-chip memory is crucial for getting good kernel per-
formance.

2.2.2 Software Hierarchy

Programs on a GPU are executed as kernels. A kernel loads data from global memory onto on-
chip memory, performs work on it, and writes output back to global memory. The kernel is
further decomposed into thread blocks which execute on streaming multiprocessors (SMs) that
are roughly analogous to the cores on a CPU. Each SM in turn has 4 warp schedulers that are
responsible for executing a warp. A warp is a collection of 32 threads executing the same in-
struction per cycle. The popular CUDA programming model (and its equivalents) offers explicit
control at the block-level, warp-level and thread-level. To give a sense of the scale of parallelism
that’s available per cycle, an H100 has 132 SMs giving us 132 * 4 * 32 > 16,000 parallel threads.

2.2.3 Operator Fusion

Given that memory resources are slower and more scare than compute resources, we want to
perform asmuch computation as possible on the datawe bring onto the chip. This is done through
an optimization called kernel fusion, which combines two or more kernels into a single kernel.
For ML workloads, there are two main types of kernel fusion. Pointwise fusions that combine
element-wise operations such as activations or norms into a matrix operation. These types of
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fusions are commonly automated through compiler passes [1, 32] or C++ templates [35]. The
second type involves restructuring the algorithm to eliminate the need for writing back to global
memory. For example, FlashAttention fuses the 𝑄𝐾𝑇 computation, softmax calculation and 𝑃𝑉
computation into a single kernel. Automating these fusions is an active area of research.

2.2.4 Tiling Languages

One common way to implement kernel fusion is through tiling which slices up the tensors to fit
them into faster memory caches. Different tiling languages offer different levels of control over
how these tiles get mapped onto the underlying hardware.

Python embedded languages: While tiling has historically been a crucial part of the ML-
compiler stack, it was made popular within the ML community with Triton[37]. Triton strikes
a balance between performance and productivity by aggressively specializing on dense block
computations (e.g attention, matrix-multiplications). It exposes explicit control only at the block-
level, letting its autotuner pick the best configurations at the warp and thread level. While this
introduces a performance tradeoff since the most optimized implementation go down to thread-
level, the programming experience is drastically simplified with the user only worrying about
how to tile their computation. Another language which takes this high level tiling paradigm even
further is Helion[30]. While Triton automatically makes a lot of low-level decisions compared
to CUDA, the user still has to compute all of the indices and offsets for the tiles which is error-
prone and has performance trade-offs that are not immediately obvious. Helion automates even
this part by directly tracing PyTorch code and automatically generating Triton. It also comes
with a much more powerful autotuner that can search over multiple valid Triton programs with
different memory layouts and code structures. On the other end of the spectrum, we have Pallas
[16] and Gluon [? ] that go lower than Triton. These languages are motivated by the need for
deeper pipelining and asynchronous programming in post-Hopper GPU architectures.

C++ embedded languages Among C++ languages we have CuTe[27] and CUTLASS[? ]. Un-
like Triton and Helion, they offer control at the warp and thread-level, making them the current
"workhorse" for implementing state of the art kernels.

2.3 Low GPU Utilization in Existing Kernels

2.3.1 What algorithmic factors affect GPU utilization ?

In order to understand the GPU utilization in existing kernels let’s start with a simple question:
What does it take to hit close to 100 % GPU utilzation ?

Every algorithm’s GPUwall-time can be roughly broken down time spent doing compute and
time spent moving data across various memory-bandwidths. These bandwidths are distributed
both within a GPU and across GPUs. For our use case, we only need to look at single GPU. Thus,
borrowing notation from [2], we can define these times as

𝑇𝑚𝑎𝑡ℎ =
Computation FLOPS

GPU FLOPS/s
(2.17)
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𝑇𝑚𝑒𝑚 =
Memory Bytes

GPU Bandwidth Bytes/s
(2.18)

Typically (but not always), for a single GPU, computation can be overlapped with data move-
ment. This means we can lower bound the wall time by using the maximum of computation and
data movement time.

𝑇𝑙𝑜𝑤𝑒𝑟 = max(𝑇𝑚𝑎𝑡ℎ,𝑇𝑚𝑒𝑚) (2.19)

If we assume we can perfectly overlap data movement and computation, when𝑇𝑚𝑎𝑡ℎ𝑇𝑚𝑒𝑚 , we
see full GPU utilization. We call this being "compute-bound". 𝑇𝑚𝑒𝑚𝑇𝑚𝑎𝑡ℎ , we tend to be "memory-
bound" and at least some fraction of our GPU FLOPS/s is wasted waiting for data to be passed
around. One way to tell if an algorithm will be compute or memory-bound is to look at its
"arithmetic intensity".

The arithmetic intensity of an algorithm is given by the ratio of the total FLOPS it performs
to the total bytes it needs to move within a GPU or across GPUs.

Arithmetic Intensity =
Computation FLOPS

Memory Bytes
(2.20)

Arithmetic intensity measures the "FLOPS per byte" of a given operation. When arithmetic
intensity is low (e.g. ReLU), we spend most of the time moving memory to and from the compute
cores, and waste available FLOPS. Once the arithmetic intensity is high (e.g. matrix multiplica-
tion), we typically spend more time in compute 𝑇𝑐𝑜𝑚𝑚 than memory transfers 𝑇𝑚𝑒𝑚 . The point
where this crossover happens is the "ridge point" of of our GPU, the ratio of peak FLOPS/s to
peak GB/s.

𝑇𝑚𝑎𝑡ℎ > 𝑇𝑚𝑒𝑚 ⇔ Computation FLOPs
Accelerator FLOPs/s

>
Communication Bytes
Bandwidth Bytes/s

⇔ Computation FLOPs
Memory Bytes

>
GPU FLOPs/s

GPU Bandwidth Bytes/s

⇔ Intensity(Computation) > Intensity(GPU)

Intensity(GPU) is the arithmetic intensity at which our accelerator achieves its peak FLOPS/s.
For an A100 this is about 153 FLOPS/byte. That means if an algorithm has lower arithmetic in-
tensity than 153, it will be bound by byte loading and thus won’t make good use of our hardware.

We can visualize this tradeoff between memory and compute using a roofline plot, which
plots peak achievable FLOPS/s (throughput) of an algorithm on our hardware (y-axis) against the
arithmetic intensity of that algorithm (x-axis).
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2.3.2 Roofline Analysis for Equivariant Kernels

We appply the roofline analysis to equivariant tensor product kernels for NequIP[4], Allegro[25]
andMACE[3]. We profile cuEquivariance[26] kernels forMACE, Allegro andOpenEquivariance[5]
kernels for NequIP. While there are other implementations[10, 21], since all of them implement
the same set of optimizations, we went for ones that were readily available from the code reposi-
tories. Moreover, here we were more interested in the peak GPU utilization set by the arithmetic
intensity of different tensor products rather then any specific kernel GPU utilization.

In Figure 2.1 we see that existing kernels are very close to the FP32 roofline with a maximum
arithmetic intensity of 30. FP32 FLOPS unfortunately takes up < 10% of the available compute on
modern GPUs. Thus, there is a need for increasing the FLOPS allocated to matrix multiplication-
style operations as well as the increasing the arithmetic intensity, both by an order of magnitude
to hit GPU utilization levels similar to attention. We highlight the algorithmic progess in improv-
ing attention’s GPU utilization by plotting the increase in GPU utilization from the original 2022
Multiheaded Attention (MHA) kernel[6] to the latest DeepSeek’sMulti-latent attention (MLA)[7].
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Figure 2.1: Roofline plots for NequIP (blue), Allegro (red) and MACE (green) forward kernels. C is
the channel and lmax is the spherical harmonic degree. MHA-128 is Multi-Headed Attention with
128 query heads and MLA-128 is Multi-Latent Attention with 128 query heads. The arithmetic
intensity varies from 10-30 with 12 TFLOPS/s being the maximum GPU utilization out of a full
capacity for 156 TFLOPS/s
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Chapter 3

Tiling Tensor Products

3.1 Naive Tensor Product Implementation

We first look at a naive tensor product algorithm as implemented in e3nn [13]. e3nn[13] provides
functionality to specify what paths the user wants between their input and output irreps, and
how to parameterize them. During runtime, the tensor product algorithm then loops over all of
the paths specified by the user.

In the naive implementation, we pass in edge embedding 𝑋𝐸,𝐶,𝐿𝑥 , spherical harmonic embed-
ding 𝑌𝐸,𝐿𝑦 , edge radial weight𝑊𝐸,𝐶,𝑃 after running through an equivariant MLP, Clebsch-Gordon
tensors 𝐶𝐺𝑙𝑥 ,𝑙𝑦,𝑙𝑜 ,𝑝 as inputs, and get edge embedding 𝑂𝐸,𝐶,𝐿𝑜 as the output.

𝐸 is the number of edges, 𝐶 is the number of channels, 𝐿𝑥 , 𝐿𝑦, 𝐿𝑜 are irrep dimensions, and 𝑃
is the number of paths in the tensor product.

Algorithm 1 Naive Tensor Product Implementation in e3nn [13]

Input: X ∈ ℝ𝐸×𝐶×𝐿𝑥 ,Y ∈ ℝ𝐸×𝐿𝑦 ,W ∈ ℝ𝐸×𝐶×𝑃 , CG ∈ ℝ𝐿𝑥×𝐿𝑦×𝐿𝑜×𝑃

Output: Output O ∈ ℝ𝐸×𝐶×𝐿𝑜

# 𝑝 is path indexing variable
𝑝 = 0
for 𝑙𝑥 , 𝑙𝑦, 𝑙𝑜 in valid tensor product paths do

Load 𝑋𝐸,𝐶,𝑙𝑥 , 𝑌𝐸,𝑙𝑦 ,𝐶𝐺𝑙𝑥 ,𝑙𝑦,𝑙𝑜 ,𝑝,𝑊𝐸,𝐶,𝑝 from GMEM
Compute 𝑂𝐸,𝐶,𝑙𝑜 =

∑
𝑙𝑥

∑
𝑙𝑦
𝑋𝐸,𝐶,𝑙𝑥 × 𝑌𝐸,𝑙𝑦 ×𝐶𝐺𝑙𝑥 ,𝑙𝑦,𝑙𝑜 ,𝑝 ×𝑊𝐸,𝐶,𝑝

Write 𝑂𝐸,𝐶,𝑙𝑜 to GMEM
𝑝+ = 1

Return O

3.2 𝑩3 Kernel Design

Similar to FlashAttention, the goal is to reduce I/O traffic between on-chip and off-chip memories
by fusing all the operations into a single kernel.

Parallelization Axes: We observe that the naive tensor product can be parallelized at two
levels:
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Figure 3.1: The tensor product’s irregular structure which is not GPU friendly mapped onto a
classic scatter form which is naively parallelizable. (Left) Dataflow of the tensor product between
1x0e + 1x1o irrep with itself using the Clebsch-Gordon coefficients (green boxes) and weights
(red). (Right) Gather-scatter version of the tensor product with flattened inputs, weights and
Clebsch-Gordon coefficients indexed using the metadata.

1. Path level: Every path can be independently scheduled onto different thread blocks.

2. Coefficient level: Every path has a 𝐶𝐺𝑖 𝑗𝑘 tensor that is reduced over 𝑖, 𝑗 through a dense
BLAS operation. The sparsity of𝐶𝐺𝑖 𝑗𝑘 (due to selection rules) can be leveraged by convert-
ing to a sparse COO tensor 𝐶𝐺𝑣𝑎𝑙𝑠 ∈ ℝ𝑁𝑁𝑍 and then accumulating 𝑖, 𝑗 over the non-zero
Clebsch-Gordon coefficients at the thread-level.

Tiling Strategy: 𝐵3’s tiling strategy is built on these insights. Tiling over the edge EE 𝐸 and
channel 𝐶 dimensions is straightforward. The challenge lies in tiling over different paths which
read and write back to variable slices of X,Y,W,CG,O. This complicates the engineering since
the slices need to fit onto limited on-chip shared memory. Existing works schedule the paths onto
hardware resources either explicitly in their kernel or by generating the kernel at compile time.
𝐵3 instead moves the complexity from compile time to runtime by passing in additional metadata,
letting the tiling language’s heuristics handle the low-level hardware scheduling. This allows 𝐵3
to exploit path-level parallelization, and coefficient-level parallelization inside the tile-block.

Gather-Scatter Reformulation: 𝐵3’s tiling strategy reformulates the tensor product into a
classic gather-scatter form 3.1. The metadata maps 𝐿𝑥 , 𝐿𝑦, 𝑃 dimensions onto 𝑁𝑁𝑍 and then back
to 𝐿𝑜 . More concretely, 𝑀𝐿𝑥→𝑁𝑁𝑍 , 𝑀𝐿𝑦→𝑁𝑁𝑍 , 𝑀𝑃→𝑁𝑁𝑍 specify how to map the inputs to 𝑁𝑁𝑍
dimension (gather), and then 𝑖𝑛𝑑𝑝𝑡𝑟𝑁𝑁𝑍→𝐿𝑜 specifies the 𝑁𝑁𝑍 slices that are accumulated over
to map back to the output (scatter).
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Algorithm 2 𝐵3 Clebsch-Gordon Implementation

Input: X ∈ ℝ𝐸×𝐶×𝐿𝑥 ,Y ∈ ℝ𝐸×𝐿𝑦 ,W ∈ ℝ𝐸×𝐶×𝑃 , CGvals ∈ ℝ𝑁𝑁𝑍 ,
Input: Metadata𝑀𝐿𝑥→𝑁𝑁𝑍 ,𝑀𝐿𝑦→𝑁𝑁𝑍 ,𝑀𝑃→𝑁𝑁𝑍 , 𝑖𝑛𝑑𝑝𝑡𝑟 (𝑁𝑁𝑍+1)→𝐿𝑜

Input: Twiddle factors 𝐸 tile size 𝐸𝑡𝑖𝑙𝑒 , 𝐶 tile size 𝐶𝑡𝑖𝑙𝑒 , 𝐿𝑜 tile size 𝐿𝑡𝑖𝑙𝑒 .
Output: Output O ∈ ℝ𝐸×𝐶×𝐿𝑜

for SMs in parallel across 𝐸/𝐸𝑡𝑖𝑙𝑒 ×𝐶/𝐶𝑡𝑖𝑙𝑒 × 𝐿𝑜/𝐿𝑡𝑖𝑙𝑒 do
Load 𝑖𝑛𝑑𝑝𝑡𝑟𝑁𝑁𝑍→𝐿𝑜

𝐿𝑡𝑖𝑙𝑒

for 𝑛𝑛𝑧𝑡𝑖𝑙𝑒 indices in 𝑖𝑛𝑑𝑝𝑡𝑟𝑁𝑁𝑍→𝐿𝑜
𝐿𝑡𝑖𝑙𝑒

do

Load mappers𝑀𝐿𝑥→𝑁𝑁𝑍
𝑛𝑛𝑧𝑡𝑖𝑙𝑒 ,𝑀𝐿𝑦→𝑁𝑁𝑍

𝑛𝑛𝑧𝑡𝑖𝑙𝑒 ,𝑀𝑃→𝑁𝑁𝑍
𝑛𝑛𝑧𝑡𝑖𝑙𝑒

from GMEM to SMEM.
# Gather: 𝐿𝑡𝑖𝑙𝑒 → 𝑛𝑛𝑧𝑡𝑖𝑙𝑒
Load 𝑋𝐸𝑡𝑖𝑙𝑒𝐶𝑡𝑖𝑙𝑒𝐿𝑡𝑖𝑙𝑒→𝑛𝑛𝑧𝑡𝑖𝑙𝑒 , 𝑌𝐸𝑡𝑖𝑙𝑒𝐿𝑡𝑖𝑙𝑒→𝑛𝑛𝑧𝑡𝑖𝑙𝑒 , 𝐶𝐺𝑛𝑛𝑧𝑡𝑖𝑙𝑒 ,𝑊𝐸𝑡𝑖𝑙𝑒𝐶𝑡𝑖𝑙𝑒𝐿𝑡𝑖𝑙𝑒→𝑛𝑛𝑧𝑡𝑖𝑙𝑒

from GMEM to SMEM.
# Already in 𝑛𝑛𝑧𝑡𝑖𝑙𝑒
Load 𝐶𝐺𝑣𝑎𝑙𝑠𝑛𝑛𝑧𝑡𝑖𝑙𝑒 .
# Scatter: 𝑛𝑛𝑧𝑡𝑖𝑙𝑒 → 𝐿𝑡𝑖𝑙𝑒
On-chip, compute𝑂𝐸𝑡𝑖𝑙𝑒𝐶𝑡𝑖𝑙𝑒𝐿𝑡𝑖𝑙𝑒+ = 𝑋𝐸𝑡𝑖𝑙𝑒𝐶𝑡𝑖𝑙𝑒𝑛𝑛𝑧𝑡𝑖𝑙𝑒 ×𝑌𝐸𝑡𝑖𝑙𝑒𝑛𝑛𝑧𝑡𝑖𝑙𝑒 ×𝐶𝐺𝑛𝑛𝑧𝑡𝑖𝑙𝑒 ×𝑊𝐸𝑡𝑖𝑙𝑒𝐶𝑡𝑖𝑙𝑒𝑛𝑛𝑧𝑡𝑖𝑙𝑒 .

Write 𝑂𝐸𝑡𝑖𝑙𝑒𝐶𝑡𝑖𝑙𝑒𝐿𝑡𝑖𝑙𝑒 to GMEM
Return O

3.3 Case Studies

3.3.1 NequIP

For NequIP, the core algorithm remains the same though now with a different list of paths. An
additional optimization involves fusing with the message passing step that does a gather-scatter
between nodes and edge for the input 𝑋𝑁,𝐶,𝐿𝑥 and output 𝑂𝑁,𝐶,𝐿𝑦 features.

Algorithm 3 Naive NequIP in e3nn [13]

Input: X ∈ ℝ𝑁×𝐶×𝐿𝑥 ,Y ∈ ℝ𝐸×𝐿𝑦 ,W ∈ ℝ𝐸×𝐶×𝑃 , CG ∈ ℝ𝐿𝑥×𝐿𝑦×𝐿𝑜×𝑃 , src ∈ ℝ𝐸, dst ∈ ℝ𝐸

Output: Output O ∈ ℝ𝑁×𝐶×𝐿𝑜

for 𝑛 indices in src do
# 𝑝 is path indexing variable
𝑝 = 0
for 𝑙𝑥 , 𝑙𝑦, 𝑙𝑜 in valid tensor product paths do

# Gather 𝑛 → 𝑒 , 𝐿𝑡𝑖𝑙𝑒 → 𝑛𝑛𝑧𝑡𝑖𝑙𝑒

Load 𝑋𝑁→𝐸,𝐶,𝑙𝑥 , 𝑌𝐸,𝑙𝑦 ,𝐶𝐺𝑙𝑥 ,𝑙𝑦,𝑙𝑜 ,𝑝,𝑊𝐸,𝐶,𝑝 from GMEM
Compute 𝑂𝐸,𝐶,𝑙𝑜 =

∑
𝑙𝑥

∑
𝑙𝑦
𝑋𝐸,𝐶,𝑙𝑥 × 𝑌𝐸,𝑙𝑦 ×𝐶𝐺𝑙𝑥 ,𝑙𝑦,𝑙𝑜 ,𝑝 ×𝑊𝐸,𝐶,𝑝

# Scatter 𝑒 → 𝑛, 𝑛𝑛𝑧𝑡𝑖𝑙𝑒 → 𝐿𝑡𝑖𝑙𝑒

Write 𝑂𝐸−>𝑁,𝐶,𝑙𝑜 to GMEM at 𝑑𝑠𝑡 indices
𝑝+ = 1

Return O
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We highlight the modifications from 𝐵3 tensor product algorithm to 𝐵3’s NequIP version in
green. 𝐵3’s NequIP version naively parallelize over the edge 𝐸 and channel 𝐶 dimemsions as
before and uses the mappers 𝑀’s to handle the tiling across the irreps dimensions. The message
passing from nodes 𝑁 to edges 𝐸 is handled inside the tensor product through edge lists 𝑠𝑟𝑐 and
𝑑𝑠𝑡 each containing node indices. 𝑠𝑟𝑐 is used to move the 𝑋 node embedding to edge embedding
before doing the tensor product, and 𝑑𝑠𝑡 to write the edge output back to the nodes. This in-
troduces a double gather-scatter in the algorithm since the tensor product is also gather-scatter
based.

Algorithm 4 𝐵3 NequIP Implementation

Input: X ∈ ℝ𝐸×𝐶×𝐿𝑥 ,Y ∈ ℝ𝐸×𝐿𝑦 ,W ∈ ℝ𝐸×𝐶×𝑃 , CGvals ∈ ℝ𝑁𝑁𝑍 , src ∈ ℝ𝐸, dst ∈ ℝ𝐸

Input: Metadata𝑀𝐿𝑥→𝑁𝑁𝑍 ,𝑀𝐿𝑦→𝑁𝑁𝑍 ,𝑀𝑃→𝑁𝑁𝑍 , 𝑖𝑛𝑑𝑝𝑡𝑟 (𝑁𝑁𝑍+1)→𝐿𝑜

Input: Twiddle factors 𝐸 tile size 𝐸𝑡𝑖𝑙𝑒 , 𝐶 tile size 𝐶𝑡𝑖𝑙𝑒 , 𝐿𝑜 tile size 𝐿𝑡𝑖𝑙𝑒 .
Output: Output O ∈ ℝ𝑁×𝐶×𝐿𝑜

for SMs in parallel across 𝐸/𝐸𝑡𝑖𝑙𝑒 ×𝐶/𝐶𝑡𝑖𝑙𝑒 × 𝐿𝑜/𝐿𝑡𝑖𝑙𝑒 do
Load 𝑠𝑟𝑐𝐸𝑡𝑖𝑙𝑒 , 𝑑𝑠𝑡𝐸𝑡𝑖𝑙𝑒
Load 𝑖𝑛𝑑𝑝𝑡𝑟𝑁𝑁𝑍→𝐿𝑜

𝐿𝑡𝑖𝑙𝑒

for 𝑛𝑛𝑧𝑡𝑖𝑙𝑒 indices in 𝑖𝑛𝑑𝑝𝑡𝑟𝑁𝑁𝑍→𝐿𝑜
𝐿𝑡𝑖𝑙𝑒

do

Load mappers𝑀𝐿𝑥→𝑁𝑁𝑍
𝑛𝑛𝑧𝑡𝑖𝑙𝑒 ,𝑀𝐿𝑦→𝑁𝑁𝑍

𝑛𝑛𝑧𝑡𝑖𝑙𝑒 ,𝑀𝑃→𝑁𝑁𝑍
𝑛𝑛𝑧𝑡𝑖𝑙𝑒

from GMEM to SMEM.
# Gather: 𝑁𝑡𝑖𝑙𝑒 → 𝐸𝑡𝑖𝑙𝑒 , 𝐿𝑡𝑖𝑙𝑒 → 𝑛𝑛𝑧𝑡𝑖𝑙𝑒

Load 𝑋𝑁𝑡𝑖𝑙𝑒→𝐸𝑡𝑖𝑙𝑒𝐶𝑡𝑖𝑙𝑒𝐿𝑡𝑖𝑙𝑒→𝑛𝑛𝑧𝑡𝑖𝑙𝑒 , 𝑌𝐸𝑡𝑖𝑙𝑒𝐿𝑡𝑖𝑙𝑒→𝑛𝑛𝑧𝑡𝑖𝑙𝑒 , 𝐶𝐺𝑛𝑛𝑧𝑡𝑖𝑙𝑒 ,𝑊𝐸𝑡𝑖𝑙𝑒𝐶𝑡𝑖𝑙𝑒𝐿𝑡𝑖𝑙𝑒→𝑛𝑛𝑧𝑡𝑖𝑙𝑒

from GMEM to SMEM
# Already in 𝑛𝑛𝑧𝑡𝑖𝑙𝑒
Load 𝐶𝐺𝑣𝑎𝑙𝑠𝑛𝑛𝑧𝑡𝑖𝑙𝑒 .
# Scatter: 𝑛𝑛𝑧𝑡𝑖𝑙𝑒 → 𝐿𝑡𝑖𝑙𝑒
On-chip, compute𝑂𝐸𝑡𝑖𝑙𝑒𝐶𝑡𝑖𝑙𝑒𝐿𝑡𝑖𝑙𝑒+ = 𝑋𝐸𝑡𝑖𝑙𝑒𝐶𝑡𝑖𝑙𝑒𝑛𝑛𝑧𝑡𝑖𝑙𝑒 ×𝑌𝐸𝑡𝑖𝑙𝑒𝑛𝑛𝑧𝑡𝑖𝑙𝑒 ×𝐶𝐺𝑛𝑛𝑧𝑡𝑖𝑙𝑒 ×𝑊𝐸𝑡𝑖𝑙𝑒𝐶𝑡𝑖𝑙𝑒𝑛𝑛𝑧𝑡𝑖𝑙𝑒 .

# Scatter: 𝐸𝑡𝑖𝑙𝑒 → 𝑁𝑡𝑖𝑙𝑒

Write 𝑂𝐸𝑡𝑖𝑙𝑒𝐶𝑡𝑖𝑙𝑒𝐿𝑡𝑖𝑙𝑒 to GMEM at 𝑑𝑠𝑡𝐸𝑡𝑖𝑙𝑒
Return O

3.3.2 Allegro

We first highlight the input modifications for Allegro. The weight𝑊𝐸,𝐶,𝑃 is not parameterized
on the edge dimension giving us𝑊𝐶,𝑃 . The spherical harmonic embedding gains an additional
channel dimension. So 𝑌𝐸,𝐿𝑦 becomes 𝑌𝐸,𝐶,𝐿𝑦 .

On the algorithm side, since Allegro is an edge based architecture compared to the node-based
for NequIP and MACE, the message passing is done on the spherical harmonic embedding 𝑌𝑁,𝐶,𝐿𝑦
instead of the output embedding. Since the scatter-gather operation here happens outside 𝐵3’s
inner loop, we are only able to partially fuse the gather from nodes to edges in the kernel.
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Algorithm 5 Naive Allegro in e3nn [13]

Input: X ∈ ℝ𝑁×𝐶×𝐿𝑥 ,Y ∈ ℝ𝐸×𝐶×𝐿𝑦 ,W ∈ ℝ𝐶×𝑃 , CG ∈ ℝ𝐿𝑥×𝐿𝑦×𝐿𝑜×𝑃 , src ∈ ℝ𝐸

Output: Output O ∈ ℝ𝐸×𝐶×𝐿𝑜

for 𝑛 indices in src do
# 𝑝 is path indexing variable
𝑝 = 0
for 𝑙𝑥 , 𝑙𝑦, 𝑙𝑜 in valid tensor product paths do

# Gather 𝑛 → 𝑒 , 𝐿𝑡𝑖𝑙𝑒 → 𝑛𝑛𝑧𝑡𝑖𝑙𝑒

Load 𝑋𝑁→𝐸,𝐶,𝑙𝑥 , 𝑌𝐸,𝐶,𝑙𝑦 ,𝐶𝐺𝑙𝑥 ,𝑙𝑦,𝑙𝑜 ,𝑝,𝑊𝐶,𝑝 from GMEM
Compute 𝑂𝐸,𝐶,𝑙𝑜 =

∑
𝑙𝑥

∑
𝑙𝑦
𝑋𝐸,𝐶,𝑙𝑥 × 𝑌𝐸,𝐶,𝑙𝑦 ×𝐶𝐺𝑙𝑥 ,𝑙𝑦,𝑙𝑜 ,𝑝 ×𝑊𝐶,𝑝

Write 𝑂𝐸,𝐶,𝑙𝑜 back to GMEM
𝑝+ = 1

Return O

As before, the modifications with respect to the naive implementation are highlighted in
green. The partial graph convolution is in moving the spherical harmonic embedding 𝑌𝑁,𝐶,𝐿𝑦
from nodes to edges 𝑌𝐸,𝐶,𝐿𝑦 by using 𝑑𝑠𝑡 node index list.

Algorithm 6 𝐵3 Allegro Implementation

Input: X ∈ ℝ𝑁×𝐶×𝐿𝑥 ,Y ∈ ℝ𝐸×𝐶×𝐿𝑦 ,W ∈ ℝ𝐶×𝑃 , CGvals ∈ ℝ𝑁𝑁𝑍 , src ∈ ℝ𝐸

Input: Metadata𝑀𝐿𝑥→𝑁𝑁𝑍 ,𝑀𝐿𝑦→𝑁𝑁𝑍 ,𝑀𝑃→𝑁𝑁𝑍 , 𝑖𝑛𝑑𝑝𝑡𝑟𝑁𝑁𝑍→𝐿𝑜

Input: Twiddle factors 𝐸 tile size 𝐸𝑡𝑖𝑙𝑒 , 𝐶 tile size 𝐶𝑡𝑖𝑙𝑒 , 𝐿𝑜 tile size 𝐿𝑡𝑖𝑙𝑒 .
Output: Output O ∈ ℝ𝐸×𝐶×𝐿𝑜

for SMs in parallel across 𝐸/𝐸𝑡𝑖𝑙𝑒 ×𝐶/𝐶𝑡𝑖𝑙𝑒 × 𝐿𝑜/𝐿𝑡𝑖𝑙𝑒 do
Load 𝑠𝑟𝑐𝐸𝑡𝑖𝑙𝑒
Load 𝑖𝑛𝑑𝑝𝑡𝑟𝑁𝑁𝑍→𝐿𝑜

𝐿𝑡𝑖𝑙𝑒

for 𝑛𝑛𝑧𝑡𝑖𝑙𝑒 indices in 𝑖𝑛𝑑𝑝𝑡𝑟𝑁𝑁𝑍→𝐿𝑜
𝐿𝑡𝑖𝑙𝑒

do

Load mappers𝑀𝐿𝑥→𝑁𝑁𝑍
𝑛𝑛𝑧𝑡𝑖𝑙𝑒 ,𝑀𝐿𝑦→𝑁𝑁𝑍

𝑛𝑛𝑧𝑡𝑖𝑙𝑒 ,𝑀𝑃→𝑁𝑁𝑍
𝑛𝑛𝑧𝑡𝑖𝑙𝑒

from GMEM to SMEM.
# Gather: 𝑁𝑡𝑖𝑙𝑒 → 𝐸𝑡𝑖𝑙𝑒 , 𝐿𝑡𝑖𝑙𝑒 → 𝑛𝑛𝑧𝑡𝑖𝑙𝑒

Load 𝑋𝑁𝑡𝑖𝑙𝑒→𝐸𝑡𝑖𝑙𝑒𝐶𝑡𝑖𝑙𝑒𝐿𝑡𝑖𝑙𝑒→𝑛𝑛𝑧𝑡𝑖𝑙𝑒 , 𝑌𝐸𝑡𝑖𝑙𝑒𝐿𝑡𝑖𝑙𝑒→𝑛𝑛𝑧𝑡𝑖𝑙𝑒 , 𝐶𝐺𝑛𝑛𝑧𝑡𝑖𝑙𝑒 ,𝑊𝐶𝑡𝑖𝑙𝑒𝐿𝑡𝑖𝑙𝑒→𝑛𝑛𝑧𝑡𝑖𝑙𝑒

from GMEM to SMEM
# Already in 𝑛𝑛𝑧𝑡𝑖𝑙𝑒
Load 𝐶𝐺𝑣𝑎𝑙𝑠𝑛𝑛𝑧𝑡𝑖𝑙𝑒 .
# Scatter: 𝑛𝑛𝑧𝑡𝑖𝑙𝑒 → 𝐿𝑡𝑖𝑙𝑒
On-chip, compute 𝑂𝐸𝑡𝑖𝑙𝑒𝐶𝑡𝑖𝑙𝑒𝐿𝑡𝑖𝑙𝑒+ = 𝑋𝐸𝑡𝑖𝑙𝑒𝐶𝑡𝑖𝑙𝑒𝑛𝑛𝑧𝑡𝑖𝑙𝑒 × 𝑌𝐸𝑡𝑖𝑙𝑒𝐶𝑡𝑖𝑙𝑒𝑛𝑛𝑧𝑡𝑖𝑙𝑒 ×𝐶𝐺𝑛𝑛𝑧𝑡𝑖𝑙𝑒 ×𝑊𝐶𝑡𝑖𝑙𝑒𝑛𝑛𝑧𝑡𝑖𝑙𝑒 .

Write 𝑂𝐸𝑡𝑖𝑙𝑒𝐶𝑡𝑖𝑙𝑒𝐿𝑡𝑖𝑙𝑒 to GMEM
Return O
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Chapter 4

Experimental Results

4.1 Experiments

We evaluate our kernels through microbenchmarks on NequIP and Allegro kernels, and an end to
end benchmark on the Allegro model. We use an NVIDIA A100 80 GB for all of our experiments
and only benchmark the forward pass of the models. All e3nn baselines are compiled with the
PyTorch2 [1] compiler.

4.1.1 Microbenchmarks

NequIP: We compare the runtime and memory of a Helion implementation of 𝐵3 with respect
to OpenEquivariance. Our irrep configurations Table 4.1 are based on the SevenNetl3i5[29] and
GNoME[23] set of NequIP models with multiplicity fixed to 64 since our kernel cannot handle
variable multiplicity.
Allegro: Here we compare both a Helion implementation and a Triton implementation that we
integrated into Allegro as part of their infrastructure upgrade [34]. We could not use Helion for
the integration since it doesn’t yet support PyTorch’s Ahead-of-Time-Inductor functionality1.

The hyperparams are based on the latest Allegro pre-print [34].

4.1.2 End to End Benchmark

We use the same setup as the microbenchmarks except calling the whole model instead of just
the kernel. Model details can be found in Appendix A

4.2 Results

B3 simplifies the code: 𝐵3’s Helion and Triton implementations span hundreds of lines com-
pared to thousands in CUDA-based implementations. The Helion implementation Figure 4.1 in
particular takes < 100 lines of code.

1https://github.com/pytorch/helion/issues/143

24

https://github.com/pytorch/helion/issues/143


Model Kernel Irreps
NequIP 64x0e+64x1o

64x0e+64x1o+64x2e
64x0e+64x1o+64x2e+64x3o

Allegro 64x0e+64x0o+64x1e+64x1o
64x0e+64x0o+64x1e+64x1o+64x2e+64x2o
64x0e+64x0o+64x1e+64x1o+64x2e+64x2o+64x3e+64x3o

Table 4.1: Irreps configs for Allegro and NequIP used in the benchmarks

B3 is faster than e3nn: Due to its tiling strategy, 𝐵3 is 3x faster for NequIP ?? and up to 10x faster
for Allegro over compiled e3nn.
B3 is as memory-efficient as CUDA implementations: By tying the memory efficiency gains to
the kernel’s overall design rather than its specific hardware mapping, 𝐵3 is as efficient as CUDA-
based implementations. 𝐵3 implements the graph convolution fusion for NequIP [5] and outer
product fusion for Allegro[34].
Additional metadata upper bounds the speedup: While the metadata simplifies the tiling on the
irreps dimension, it also introduces additional overhead compared to CUDA implementations
which we see here in the 2-4x gap in NequIP and 10x gap for Allegro. We leave it to future work
to further sweep the performance-simplicity front.
Kernel speedups ≠ End-to-end speedups: We are reminded of Amdahl’s law[8] in 4.4 where 100x
gains on the kernel side only translate to 6x end-to-end speedup. This underscores the need for
equivariant algorithms that can not only be made more efficient with kernels but also take up a
sizeable chunk of the overall runtime.
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� �
1 @helion.kernel(dot_precision="ieee")
2 def helion_nequip(
3 X: torch.Tensor ,
4 Y: torch.Tensor ,
5 out: torch.Tensor ,
6 M_x_to_nnz: torch.Tensor ,
7 M_y_to_nnz: torch.Tensor ,
8 M_p_to_nnz: torch.Tensor ,
9 indptr: torch.Tensor ,
10 CGvals: torch.Tensor ,
11 src: torch.Tensor ,
12 dst: torch.Tensor ,
13 weight: torch.Tensor ,
14 ) -> torch.Tensor:
15 """ Helion kernel for NequIP convolution."""
16 *,C, * = X.shape
17 E = src.shape [0]
18 *, *,L_out = out.shape
19 # Tile across the E, C, and L_out dimensions
20 for tile_e , tile_c , tile_o in hl.tile([E, C, L_out]):
21 # Load src_tile_e , dst_tile_e
22 src_idx_chunk = src[tile_e]
23 dst_idx_chunk = dst[tile_e]
24
25 # Get inptr_NNZ_to_L_out_tile_o
26 start_ptr_chunk = indptr[tile_o]
27 end_ptr_chunk = indptr[tile_o.index +1]
28 nnz = end_ptr_chunk - start_ptr_chunk
29 max_nnz = nnz.amax()
30
31 acc = hl.zeros((tile_e , tile_c , tile_o), dtype=X.dtype

)
32
33 for nnz_tile in hl.tile(max_nnz , block_size =1):
34
35 # Gather: tile_o -> tile_nnz
36 offsets = start_ptr_chunk + nnz_tile.index
37 mask = nnz_tile.index < nnz
38
39 x_idx_chunk = hl.load(
40 M_x_to_nnz ,
41 [offsets],
42 extra_mask=mask ,
43 )
44 y_idx_chunk = hl.load(
45 M_y_to_nnz ,
46 [offsets],
47 extra_mask=mask ,
48 )
49 w_idx_chunk = hl.load(
50 M_p_to_nnz ,
51 [offsets],
52 extra_mask=mask ,
53 )
54 CGval_chunk = hl.load(
55 CGvals ,
56 [offsets],
57 extra_mask=mask ,
58 )
59
60 # Gather: tile_n -> tile_e
61 # Scatter: tile_nnz -> tile_o
62 acc += (X[src_idx_chunk , tile_c , x_idx_chunk] *
63 Y[tile_e , l2_idx_chunk ][:, None , :] *
64 CGval_chunk *
65 weight[tile_e , tile_c , w_idx_chunk ])
66
67 # Scatter: tile_e -> tile_n
68 hl.atomic_add(out , [dst_idx_chunk , tile_c , tile_o],

acc)
69 return out� �

� �
1 @helion.kernel(dot_precision="ieee")
2 def helion_kernel_allegro(
3 X: torch.Tensor ,
4 Y: torch.Tensor ,
5 out: torch.Tensor ,
6 M_x_to_nnz: torch.Tensor ,
7 M_y_to_nnz: torch.Tensor ,
8 M_p_to_nnz: torch.Tensor ,
9 indptr: torch.Tensor ,
10 CGvals: torch.Tensor ,
11 src: torch.Tensor
12 weight: torch.Tensor
13 ) -> torch.Tensor:
14 E, C, L_out = output.shape
15 # Tile across the E, C, and L_out dimensions
16 for tile_e , tile_c , tile_o in hl.tile([E, C, L_out]):
17 start_ptr_chunk = indptr[tile_o]
18 end_ptr_chunk = indptr[tile_o.index +1]
19 nnz = end_ptr_chunk - start_ptr_chunk
20 max_nnz = nnz.amax()
21
22 src_chunk = src[tile_e]
23 acc = hl.zeros((tile_e , tile_c , tile_o), dtype=X.dtype

)
24 for nnz_tile in hl.tile(max_nnz , block_size =1):
25
26 # Gather: tile_o -> tile_nnz
27 offsets = start_ptr_chunk + nnz_tile.index
28 mask = nnz_tile.index < nnz
29
30 x_idx_chunk = hl.load(
31 M_x_to_nnz ,
32 [offsets],
33 extra_mask=mask ,
34 )
35 y_idx_chunk = hl.load(
36 M_y_to_nnz ,
37 [offsets],
38 extra_mask=mask ,
39 )
40 w_idx_chunk = hl.load(
41 M_p_to_nnz ,
42 [offsets],
43 extra_mask=mask ,
44 )
45 CGval_chunk = hl.load(
46 CGvals ,
47 [offsets],
48 extra_mask=mask ,
49 )
50
51 # Gather: tile_n -> tile_e
52 # Scatter: tile_nnz -> tile_o
53 acc += X[tile_e , tile_c , x_idx_chunk] *
54 Y[src_chunk , tile_c , y_idx_chunk] *
55 CGval_chunk *
56 weight[tile_c , w_idx_chunk ][None , :, :]
57 output[tile_e , tile_c , tile_o] = acc
58 return output� �

Figure 4.1: 𝐵3’s kernels for NequIP (left) and Allegro (right) in < 100 lines of Helion code

26



102 103

Number of atoms

1

3

5

8

10

12

15

W
al

lti
m

e 
sp

ee
du

p 
ov

er
 e

3n
n

NequIP Forward Kernel Microbenchmark on NVIDIA A100-SXM4-80GB

OpenEquivariance (CUDA)
64x0e + 64x1o
64x0e + 64x1o + 64x2e
64x0e + 64x1o + 64x2e + 64x3o

B3 (Helion)
64x0e + 64x1o
64x0e + 64x1o + 64x2e
64x0e + 64x1o + 64x2e + 64x3o

Figure 4.2: NequIP kernels forward walltime speedup over e3nn. 𝐵3 (Helion) is 3x faster than
e3nn and 2-4x slower than OpenEquivariance (CUDA)
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Allegro Forward Kernel Microbenchmark on NVIDIA A100-SXM4-80GB

cuEquivariance (CUDA)
64x0e + 64x0o + 64x1e + 64x1o
64x0e + 64x0o + 64x1e + 64x1o + 64x2e + 64x2o
64x0e + 64x0o + 64x1e + 64x1o + 64x2e + 64x2o + 64x3e + 64x3o

B3 (Triton)
64x0e + 64x0o + 64x1e + 64x1o
64x0e + 64x0o + 64x1e + 64x1o + 64x2e + 64x2o
64x0e + 64x0o + 64x1e + 64x1o + 64x2e + 64x2o + 64x3e + 64x3o

B3 (Helion)
64x0e + 64x0o + 64x1e + 64x1o
64x0e + 64x0o + 64x1e + 64x1o + 64x2e + 64x2o
64x0e + 64x0o + 64x1e + 64x1o + 64x2e + 64x2o + 64x3e + 64x3o

Figure 4.3: Allegro kernels forward walltime speedup over e3nn. Both Helion and Triton imple-
mentations of 𝐵3 are comparable and are 5-10x faster over e3nn while being 2-10x slower than
cuEquivariance (CUDA)
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End-to-End Benchmark
Allegro Forward Benchmark on NVIDIA A100-SXM4-80GB

cuEquivariance (CUDA)
64x0e + 64x0o + 64x1e + 64x1o
64x0e + 64x0o + 64x1e + 64x1o + 64x2e + 64x2o
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B3 (Triton)
64x0e + 64x0o + 64x1e + 64x1o
64x0e + 64x0o + 64x1e + 64x1o + 64x2e + 64x2o
64x0e + 64x0o + 64x1e + 64x1o + 64x2e + 64x2o + 64x3e + 64x3o

Figure 4.4: Allegro end-to-end inference speedups over e3nn. Upto 3x faster than e3nn and 2x
slower than cuEquivariance (CUDA)
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Chapter 5

Conclusion

In this thesis we presented 𝐵3, a simplified 100 line equivariant kernel that covers all known op-
timizations, while providing walltime and memory efficiency gains over PyTorch baseline. While
existing works trade off performance for simplicity, we instead explore trading off simplicity for
performance to improve kernel development velocity.
We highlight some promising future extensions of this work:

• Backward kernels: Since the focus our work was in identifying a simplified abstraction
layer, we did not invest that much effort in having a complete production set of kernels that
include the backward and double backward kernels, typically needed for training compu-
tational chemistry models with forces or hessians.

• Reducing metadata overhead: The metadata strategy that we took is definitely not the
only way to deal with the tensor product sparsity and parallel path execution. We invite
future work to find more cleaner and performant alternatives.

• Higher arithmetic intensity: Our main goal was to provide an accessible interface for pro-
totyping different path pruning strategies that bring up the arithmetic intensity along with
expanding to megafusions that implement a single kernel for the entire layer or network
[14].
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Appendix A

Details for Reproducibility

Code: All of the kernels and benchmarking code can be found at
https://github.com/mitkotak/tiling_tensorproduct

Input Generation: The graphs are generated using MACE’s ASE benchmarking script1 that
scales up a diamond crystal lattice. Radial cutoff is set 6 A.

End to End Model: We list the hyperparams for the Allegro model we used in our bench-
marking in Table A.1

Timing: All benchmarking was done using Triton’s do_bench function. We do 25 warmups
and 100 runs, and report the median value.

1https://github.com/ACEsuit/mace/blob/main/tests/test_benchmark.py
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Table A.1: Allegro Model Hyperparameters

Parameter Value
Common Configuration

cutoff 6.0
chemical_symbols ["C"]
seed 123
model_dtype "float32"
type_names ["C"]
r_max 6.0
per_type_energy_shifts {"C": 0.0}
per_type_energy_scales {"C": 1.0}

Allegro Model Configuration
_target_ allegro.model.AllegroModel
l_max 3
parity True
num_layers 2
num_scalar_features 64
num_tensor_features 64
tp_path_channel_coupling True
radial_chemical_embed allegro.nn.TwoBodyBesselScalarEmbed
radial_chemical_embed_dim 128
scalar_embed_mlp_hidden_layers_depth 2
scalar_embed_mlp_hidden_layers_width 64
scalar_embed_mlp_nonlinearity "silu"
allegro_mlp_hidden_layers_depth 2
allegro_mlp_hidden_layers_width 256
allegro_mlp_nonlinearity "silu"
readout_mlp_hidden_layers_depth 1
readout_mlp_hidden_layers_width 128
readout_mlp_nonlinearity None
avg_num_neighbors 25.0
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